
Protocols
This section describes Application Programming Interfaces (API) and protocols exposed by an E-SDC or used by an
E-SDC to communicate with the other components (TaxCore.API, Secure element Applet, PKI Applet or SD
Card/USB Flash Drive) required to fulfill its primary role – to safeguard a transaction and to transfer the audit
packages to the tax authority’s system.

Accredited POS systems can communicate with the E-SDC using the POS to SDC Protocol.

TaxCore.API
TaxCore.API is a REST API exposed by a tax authority’s system to E-SDC devices. It provides services used
by the E-SDCs to submit Audit Packages, to notify TaxCore if the online status has been changed and to
receive configuration commands.

1.

Secure Element Applet API
Communication with a Secure element Applet API is performed through standard APDU commands.

2.

File Based Communication
This section contains the description of the File-based communication with E-SDC.

3.

TaxCore.API
TaxCore.API is a REST API exposed by a tax authority’s system to E-SDC devices. It provides services used by the E-
SDCs to submit Audit Packages, to notify TaxCore if the online status has been changed and to receive
configuration commands.

An E-SDC is authenticated by TaxCore.API using a client digital certificate and an authentication Token.

Authentication

Introduction
Communication between a Client and TaxCore.API is carried out via the HTTPS protocol.

The Client is authenticated by TaxCore.API using either a client certificate or an authentication token obtained
from TaxCore.API. To obtain an authentication token, a client certificate authentication has to be successfully

https://tap.vms.frcs.org.fj/help/view/1563836329/POS-to-SDC-Protocol
https://tap.vms.frcs.org.fj/help/view/1667383594/TaxCore.API
https://tap.vms.frcs.org.fj/help/view/1667383594/Secure-Element-Applet-API
https://tap.vms.frcs.org.fj/help/view/1667383594/File%2DBased-Communication

conducted as the first step. For more information see Request Authentication Token.

Once token has been obtained HTTP request must contain TaxCoreAuthenticationToken key in the request HTTP
headers with a valid authentication token as a value.

Digital Certificates and PIN Codes
The tax authority’s system issues a Secure Element to a taxpayer as follows:

Taxpayer’s digital certificate is stored in the Secure Element.1.
The Secure Element is stored on the smart card.2.
The PIN or password is generated and printed on the PIN mailer.3.
The Secure Element and PIN code are securely delivered to the taxpayer.4.

Digital Certificates for Testing Purpose
The tax authority will issue the requested number of test digital certificates to each accredited supplier and each
accredited taxpayer.

Authentication Token
E-SDC uses an authentication token when calling the TaxCore API web services. Authentication token is obtained
from TaxCore API by calling the service Request Authentication Token and providing a Taxpayer’s digital
certificate.

Role of the PKI Applet
PKI (public key infrastructure) Applet is installed along with the Secure Element Applet on the same Smart Card.

The role of the PKI applet is to support the secure communication and client certificate authentication with
TaxCore.API using HTTPS protocol. The certificate used to establish a secure connection is stored on a smart card
and it can be accessed from the PKI Applet using PKSC#11 API.

The certificate is loaded in the slot / token structure on the PKI Applet.

After the certificate is extracted from the smart card (in DER format) it can be used as a standard X.509 certificate
for TLS/SSL and HTTPS protocols.

Valid PIN is required to read the certificate from PKI Applet using PKCS#11 API. Pin for PKI Applet is the same as
the PIN for the Secure Element Applet.

Content
Required Drivers1.

https://tap.vms.frcs.org.fj/help/view/1134894772/Request-Authentication-Token
https://tap.vms.frcs.org.fj/help/view/1134894772/Request-Authentication-Token

Smart Cards are programmed with PKI firmware according to GIDS (Generic Identity Device Specification)
standard. Appropriate drivers shall be installed/programmed on an E-SDC in order to enable PKI Applet
usage.

Required Drivers

Introduction
Smart Cards are programmed with PKI firmware according to GIDS (Generic Identity Device Specification)
standard. Appropriate drivers shall be installed/programmed on an E-SDC in order to enable PKI Applet usage.

Windows OS Drivers
GIDS driver is an integral part of Windows OS since Windows 7 SP1, enabling the instant use of a smart card. No
additional driver installation is required.

Linux OS Drivers
In order to use PKI Applet on Linux based OS, a pkcs11 driver from the OpenSC library is required. OpenSC
libraries and tools are freely available on https://github.com/OpenSC.

In the following example, the installation of required drivers, libraries and tools on Debian / Ubuntu flavor of Linux
OS with USB based card reader is shown. It is assumed that OpenSSL is used for TLS/SSL communication.

Install card reader driver1.

apt-get install libudev-dev
wget https://alioth.debian.org/frs/download.php/file/4126/pcsc-lite-x.y.z.tar.bz2
tar -xf pcsc-lite-x.y.z.tar.bz2
cd pcsc-lite-x.y.z
./configure
make
make install
aptitude install libusb-1.0-0-dev
wget https://alioth.debian.org/frs/download.php/file/4111/ccid-x.y.z.tar.bz2
tar -xf ccid-x.y.z.tar.bz2
cd ccid-x.y.z
./configure
make
make install
copy 92_pcscd_ccid.rules file from src directory to /etc/udev/rules.d/
aptitude install libltdl-dev
wget http://ftp.de.debian.org/debian/pool/main/o/openct/openct_x.y.z.orig.tar.gz
tar -xf openct_x.y.z.orig.tar.gz
cd openct_x.y.z
./configure
make
make all

https://tap.vms.frcs.org.fj/help/view/937411774/Required-Drivers
https://github.com/OpenSC

Install OpenSSL development library2.

apt-get install libssl-dev

Install OpenSC package3.

wget http://cznic.dl.sourceforge.net/project/opensc/OpenSC/opensc-x.y.z/opensc-x.y.z.tar.gz
tar -xf opensc-x.y.z.tar.gz
cd opensc-x.y.z
./configure
make
make install

Run opensc-tool command from terminal

If message that libopensc.so.3 cannot be loaded find it with

find / -name “libopensc.so”

Copy found library to /usr/lib

Install libp11 library4.

apt-get install libp11-2

Install engine_pkcs11 library5.

Download source code from https://github.com/OpenSC/engine_pkcs11/releases/•
Build and install library according to instructions found project page•

After the above steps are executed, the certificate shall be accessible from the appropriate slot/token using a
PKCS11 family of functions from the lipb11 library. ENGINE family of functions can be used to load the pkcs11
engine in the OpenSSL.

Other Platforms and Operating Systems
Please contact OpenSC community (https://github.com/OpenSC) for further information.

SDC

Introduction
SDC Section of TaxCore.API is used by any SDCs to establish connection with backend.

https://github.com/OpenSC/engine_pkcs11/releases/
https://github.com/OpenSC

Activities

Get initialization and configuration information required for normal operation
•

Submit prepared audit packages
•

Notify backend of online/offline status
•

Pull pending commands from backend
•

Notify backend of command execution results
•

Content

Request Authentication Token
When requesting the authentication token, a Client authenticates itself with a valid Digital Certificate
(stored in the PKI applet). If the token is successfully created it is returned to the Client as a string. In order
to receive an authentication token, each client must establish a secure connection to “/api/v3/sdc/token”
endpoint on TaxCore.API and authenticate using client digital certificate.

1.

Get Initialization Commands
For each new smart card issued by a tax authority, a set of commands is generated, which contain
information necessary for invoice signing (Tax Rates, Verification URL, NTP server etc.).

2.

Notify Online Status
If an E-SDC is online, it shall periodically (once every 1 – 5 minutes) invoke the “Notify Online Status”
operation on TaxCore.API.

3.

Notify Command Processed
After an E-SDC processes commands received from TaxCore.API, it will report the results of execution to
TaxCore.API.

4.

Submit Audit Package
After the invoice audit package is created (explained in the section Creating an Audit Package), it shall be
transferred to TaxCore.API the next time an Internet connection is available.

5.

Submit Audit Request Payload ARP
E-SDC invokes the Start Audit APDU command and receives 260 bytes of data that represent the Audit
Request Payload (ARP). ARP has to be converted to the string using Base64 encoding.

6.

https://tap.vms.frcs.org.fj/help/view/1134894772/Request-Authentication-Token
https://tap.vms.frcs.org.fj/help/view/1134894772/Get-Initialization-Commands
https://tap.vms.frcs.org.fj/help/view/1134894772/Notify-Online-Status
https://tap.vms.frcs.org.fj/help/view/1134894772/Notify-Command-Processed
https://tap.vms.frcs.org.fj/help/view/1134894772/Submit-Audit-Package
https://tap.vms.frcs.org.fj/help/view/727096921/Creating-an-Audit-Package
https://tap.vms.frcs.org.fj/help/view/1134894772/Submit-Audit-Request-Payload-%2D-ARP
https://tap.vms.frcs.org.fj/help/view/1596964304/Audit

Request Authentication Token

Introduction
When requesting the authentication token, a Client authenticates itself with a valid Digital Certificate (stored in the
PKI applet). If the token is successfully created it is returned to the Client as a string. In order to receive an
authentication token, each client must establish a secure connection to “/api/v3/sdc/token” endpoint on
TaxCore.API and authenticate using client digital certificate.

A request is composed as follows:

Create HTTPS GET request object1.
Add HTTP headers "Accept: application/json" and "Content-Type: application/json"2.
Read certificate from the PKI Applet3.
Use the certificate from the PKI Applet to establish SSL/TLS connection4.
Send a request to "/api/v3/sdc/token" operation on TaxCore.API web service.5.
Read the response as JSON structure defined below6.

Endpoints

Endpoint Example

<TaxCore_API_URL_obtained_from_certificate_as_explained_
here>/api/v3/sdc/token

https://api.vms.frcs.org.fj/api/v3/sdc/token

NOTE:
Development and production environments, as well the environments in different countries, have different URLs.
For this reason, URLs and names in your documentation, code and UI should not be hardcoded but configurable
or extracted from a digital certificate.

Method
GET

Header
Add the following HTTP headers to each request:

Accept: application/json•

https://tap.vms.frcs.org.fj/help/view/69417669/Obtain-a-URL-of-the-TaxCore.API-Service-from-Digital-Certificate

Authentication
The certificate-based authentication is used only to request a token. Request for the authentication token is
periodically invoked to obtain a new token and to verify the date and time.

For authentication details please refer to Authentication

Request
N/A

Response

Field Type Description

token string The Token is valid for 8 hours by default. A Client uses the current token when calling
all other services exposed by TaxCore.API.

expiresAt string Date and time of token expiration - in UTC time. When a token expires a Client must
request a new token. If the Client requests a new token while the current token is still
valid, TaxCore will return the current token.

Example

{
 "token": "245ebd69-1438-4dc3-a65b-18f1a527f093",
 "expiresAt": "2020-12-23 15:18:33Z"
}

Get Initialization Commands

Introduction
For each new smart card issued by a tax authority, a set of commands is generated, which contain information
necessary for invoice signing (Tax Rates, Verification URL, NTP server etc.).

Commands can be downloaded using one of the following channels:

By invoking TaxCore.API service Notify Online Status (typically by E-SDC)•
By invoking TaxCore.API service Submit Audit Package (typically by E-SDC)•

•

https://tap.vms.frcs.org.fj/help/view/1911379194/Authentication

By invoking TaxCore.API service Get Initialization Commands (typically by E-SDC)•

By using the Taxpayer Administration Portal•

Once the commands are processed, E-SDC reports the execution status to TaxCore.API as explained in section
Notify Command Processed.

E-SDC can explicitly require initialization commands, by invoking TaxCore.API service Get Initialization Commands.

Initialization commands include:

Configure Time Server URL Command•
Set Tax Rates Command•
Update Verification URL Command•
Update TaxCore Configuration•

To get initialization commands compose HTTPS GET request as follows:

Add headers "Accept: application/json", "Content-Type: application/json" and header that contains an
authentication token

1.

Submit GET request to https://<taxcore_api_url>/api/v3/sdc/commands2.

Endpoints

Endpoint Example

<TaxCore_API_URL_obtained_from_certificate_as_explained_
here>/api/v3/sdc/commands

https://api.vms.frcs.org.fj/api/v3/sdc/commands

NOTE:
Development and production environments, as well the environments in different countries, have different URLs.
For this reason, URLs and names in your documentation, code and UI should not be hardcoded but configurable
or extracted from a digital certificate.

Method
GET

Header
Add the following HTTP headers to each request

TaxCoreAuthenticationToken: <token-value-returned-from-Request-Authentication-•

https://tap.vms.frcs.org.fj/help/view/1134894772/Notify-Command-Processed
https://tap.vms.frcs.org.fj/help/view/69417669/Obtain-a-URL-of-the-TaxCore.API-Service-from-Digital-Certificate

Token-method>
Accept: application/json•

Authentication
For authentication details please refer to Authentication

Request
N/A

Response
The response contains a list of commands that must be executed by E-SDC, as described in section Commands.

Notify Online Status

Introduction
If an E-SDC is online, it shall periodically (once every 1 – 5 minutes) invoke the “Notify Online Status” operation on
TaxCore.API.

Compose HTTPS PUT request as follows:

Add headers "Accept: application/json", "Content-Type: application/json" and header that contains
authentication token

1.

Add a string “true” or "false" to the body of the request (depending on whether the E-SDC is online or
going offline)

2.

Submit PUT request to https://<taxcore_api_url>/api/v3/sdc/status3.

After the request is sent, TaxCore.API shall return a response with a JSON formatted string containing a list of
commands, as described in section Commands, that an E-SDC shall execute (new tax rates, verification URL, NTP
URL or public key used for encryption). The Command list can be empty.

Endpoints

Endpoint Example

https://api.vms.frcs.org.fj/api/v3/sdc/statushttps://api.sandbox.taxcore.online/api/v3/sdc/status

https://tap.vms.frcs.org.fj/help/view/1911379194/Authentication
https://tap.vms.frcs.org.fj/help/view/716114083/Commands
https://tap.vms.frcs.org.fj/help/view/716114083/Commands

Method
PUT

Header
Add the following HTTP headers to each request

TaxCoreAuthenticationToken: <token-value-returned-from-Request-Authentication-
Token-method>

•

Accept: application/json•
Content-Type: application/json•

Authentication
For authentication details please refer to Authentication

Request
true

The list of commands will be obtained only if the string "true" is submitted in the request

Response
The response contains a list of commands that must be executed by E-SDC, as described in section Commands.

Notify Command Processed

Introduction
After an E-SDC processes commands received from TaxCore.API, it will report the results of execution to
TaxCore.API.

Add headers "Accept: application/json", "Content-Type: application/json" and header that contains
authentication token

1.

Add a string “true” or "false" to the body of the request (depending on whether the E-SDC successfully
processed commands)

2.

Submit PUT request to https://<taxcore_api_url>/api/v3/sdc/commands/{commandId}3.

https://tap.vms.frcs.org.fj/help/view/1911379194/Authentication
https://tap.vms.frcs.org.fj/help/view/716114083/Commands

Endpoints

Endpoint Example

<TaxCore_API_URL_obtained_from_certificate_as_explained_
here>/api/v3/sdc/commands/{commandId}

https://api.vms.frcs.org.fj/api/v3/sdc/commands/CC63C53D-
205A-4CBF-AD0C-6617D42AE466

NOTE:
Development and production environments, as well the environments in different countries, have different URLs.
For this reason, URLs and names in your documentation, code and UI should not be hardcoded but configurable
or extracted from a digital certificate.

Method
PUT

Header
Add the following HTTP headers to each request

TaxCoreAuthenticationToken: <token-value-returned-from-Request-Authentication-
Token-method>

•

Accept: application/json•
Content-Type: application/json•

Authentication
For authentication details please refer to Authentication

Request
true

Example

https://api.sandbox.taxcore.online/api/v3/sdc/commands/CC63C53D-205A-4CBF-AD0C-6617D42AE466

https://tap.vms.frcs.org.fj/help/view/69417669/Obtain-a-URL-of-the-TaxCore.API-Service-from-Digital-Certificate
https://tap.vms.frcs.org.fj/help/view/1911379194/Authentication
https://api.sandbox.taxcore.online/api/v3/sdc/commands/CC63C53D-205A-4CBF-AD0C-6617D42AE466

Response
HTTP 200 OK

Submit Audit Package
After the invoice audit package is created (explained in the section Creating an Audit Package), it shall be
transferred to TaxCore.API the next time an Internet connection is available.

Compose HTTPS POST request as follows:

Add headers "Accept: application/json", "Content-Type: application/json" and header that contains an
authentication token

1.

Add an Audit Package as a JSON message to the body of the HTTP POST request2.
Submit POST request to https://<taxcore_api_url>/api/v3/sdc/audit3.

After the request is sent, TaxCore.API responds with a JSON formatted text containing a status of operation and a
list of commands that an E-SDC shall execute.

NOTE:
Values for sdcDateTime and all other fields (see Create Invoice) must match the values submitted to the Secure
Element for digital signing (see Sign Invoice in Fiscalization), as well as the values in the verification URL (see
Create Verification URL).

NOTE:
In case the field Request.Item.Name exceeds the defined maximum length (see Create Invoice), its value is
truncated.

NOTE:
In case the field Request.DateAndTimeOfIssue is out of range (see Create Invoice), its value is replaced with
a null value.

Endpoints

Endpoint Example

https://tap.vms.frcs.org.fj/help/view/727096921/Creating-an-Audit-Package
https://tap.vms.frcs.org.fj/help/view/1846128515/Create-Invoice
https://tap.vms.frcs.org.fj/help/view/1596964304/Fiscalization
https://tap.vms.frcs.org.fj/help/view/494421103/Create-Verification-URL
https://tap.vms.frcs.org.fj/help/view/1846128515/Create-Invoice
https://tap.vms.frcs.org.fj/help/view/1846128515/Create-Invoice

<TaxCore_API_URL_obtained_from_certificate_as_explained_
here>/api/v3/sdc/audit

https://api.vms.frcs.org.fj/api/v3/sdc/audit

NOTE:
Development and production environments, as well the environments in different countries, have different URLs.
For this reason, URLs and names in your documentation, code and UI should not be hard-coded but configurable
or extracted from a digital certificate.

Method
POST

Header
Add the following HTTP headers to each request

TaxCoreAuthenticationToken: <token-value-returned-from-Request-Authentication-
Token-method>

•

Accept: application/json•
Content-Type: application/json•

Authentication
For authentication details, please refer to Authentication.

Request
Request that must be generated and sent by SDC is described in this section Format of the Audit Package.

Example

{
 "key": "VGhpcyBJcyBLZXkK...",
 "iv": "VGhpcyBJcyBJVgo...",
 "payload": "VGhpcyBJcyBQYXlsb2FkCg..."
}

Response
The response contains a list of commands that must be executed by E-SDC, as described in section Commands.

https://tap.vms.frcs.org.fj/help/view/69417669/Obtain-a-URL-of-the-TaxCore.API-Service-from-Digital-Certificate
https://tap.vms.frcs.org.fj/help/view/1911379194/Authentication
https://tap.vms.frcs.org.fj/help/view/1959712697/Format-of-the-Audit-Package
https://tap.vms.frcs.org.fj/help/view/716114083/Commands

AuditDataStatus {
status (integer, optional) = ['0', '1', '2', '3', '4', '5', '6']integerEnum:0, 1, 2, 3, 4, 5,
commands (Array[Command], optional)
}]

Data Fields

status - returned after TaxCore.API unpacks and verifies audit packages. If all verifications are successful, the
status should have the value 4. Other values can help E-SDC developers rectify problems with audit packages.
Their meanings are the following:

0 - Invalid audit package - TaxCore API failed to decrypt the received audit package. The possible reasons
are: the received file is corrupt, has no content, the file is encrypted using the wrong TaxCore public key,
etc.

•

1 - Invoice cannot be stored - the received invoice is probably valid, but due to the internal server error
TaxCore.API is unable to store it

•

72 - E-SDC sent the wrong TIN or SignedBy or RequestedBy fields when signing this invoice
•

3 - Invoice internal data was encrypted in a wrong way
•

4 - Invoice is verified
•

5 - Taxes on this invoice were calculated using a tax rates group that does not exist or is obsolete
•

6 - At the moment of invoice signing, the certificate on the secure element was already revoked
•

8 - At the moment of invoice signing, the certificate on the secure element was not officially issued
•

24 - Information about the E-SDC's Manufacturer Registration Code is in a wrong format
•

69 - Invoice contains TaxItem for a label that does not exist in the tax rate group named in
Result.TaxGroupRevision

•

70 - Invoice contains TaxCounters (in internal data) for CategoryOrderId which does not exist in the tax
rate group named in Result.TaxGroupRevision, i.e. E-SDC sent a non-existing CategoryOrderId to
the secure element

•

commands - contains a list of commands that E-SDC should execute, as described in section Commands.
•

NOTE:
If status 4 (Invoice is verified) is received from TaxCore.API, that audit package should immediately be deleted
from the E-SDC's local storage (see Creating an Audit Package). If any other status is received, the audit package
must not be deleted.

https://tap.vms.frcs.org.fj/help/view/716114083/Commands
https://tap.vms.frcs.org.fj/help/view/716114083/Commands
https://tap.vms.frcs.org.fj/help/view/494421103/Creating-an-Audit-Package

NOTE:
The E-SDC should try to resubmit an audit package to TaxCore.API. only if it receives status 1 (Invoice cannot be
stored) from the TaxCore.API. If any other status is received, the audit package should not be resubmitted.

Example

{
 "status": 0,
 "commands": [
 {
 "commandId": "3930CEEF-F637-444D-8295-F629D6E482D3",
 "type": 1,
 "payload": "0.europe.pool.ntp.org",
 "uid": "ABCD1234"
 }
]
}

Submit Audit Request Payload - ARP
E-SDC invokes the Start Audit APDU command and receives 260 bytes of data that represent the Audit Request
Payload (ARP). ARP has to be converted to the string using Base64 encoding.

E-SDC invokes the Amount Status APDU command and receives the current sum and limit for the secure element.

These 3 values are submitted to endpoint https://<taxcore_api_url>/api/v3/sdc/audit-proof as an Audit-Proof
Request structure in the body of the HTTP request.

Compose HTTPS POST request as follows:

Add headers "Accept: application/json", "Content-Type: application/json" and header that contains
authentication token

1.

Create a request structure as per the below model and add it to the body of the HTTP POST request2.
Submit POST Request to https://<taxcore_api_url>/api/v3/sdc/audit-proof3.

Endpoints

Endpoint Example

<TaxCore_API_URL_obtained_from_certificate_as_explained_
here>/api/v3/sdc/audit-proof

https://api.vms.frcs.org.fj/api/v3/sdc/audit-
proof

NOTE:
Development and production environments, as well the environments in different countries, have different URLs.
For this reason, URLs and names in your documentation, code and UI should not be hardcoded but configurable

https://tap.vms.frcs.org.fj/help/view/1596964304/Audit
https://tap.vms.frcs.org.fj/help/view/1596964304/Fiscalization
https://tap.vms.frcs.org.fj/help/view/69417669/Obtain-a-URL-of-the-TaxCore.API-Service-from-Digital-Certificate

or extracted from a digital certificate.

Method
POST

Header
Add the following HTTP headers to each request

TaxCoreAuthenticationToken: <token-value-returned-from-Request-Authentication-
Token-method>

•

Accept: application/json•
Content-Type: application/json•

Authentication
For authentication details please refer to Authentication

Request
JSON structure as defined in section Format of the Audit-Proof Request

Model

ProofOfAuditRequest {
auditRequestPayload (string),

sum (integer) 64bit unsigned,

limit (integer) 64bit unsigned
}

Example

{
 "auditRequestPayload": "d4A/iLtwmDYeZyacm/nDlCF...",
 "sum": 11034,
 "limit": 100000
}

Response

https://tap.vms.frcs.org.fj/help/view/1911379194/Authentication
https://tap.vms.frcs.org.fj/help/view/1959712697/Format-of-the-Audit%2DProof-Request

HTTP 200 OK

Secure Element Applet API
Communication with a Secure element Applet API is performed through standard APDU commands.

For a detailed description of APDU communication, APDU commands data structure and particular bytes meaning,
please refer to ISO/IEC 7816-4 standard.

Commands are grouped into three categories based on the type of usage:

General1.
Fiscalization2.
Audit3.

Important Notes
All APDU commands are sent to the Smart Card using T1 communication protocol1.
All amounts or counter values are submitted to/received from the Secure element using Big-endian. Big-
endian is an order in which the "big end" (most significant value in the sequence) is stored first (at the
lowest storage address)

2.

P1 and P2 values considered in the request processing when,
Select Applet Command1.
force using CRC for Data in APDU transimission2.

3.

PIN is sent in ASCII hex format from SE applet version 3.2.2.4.
CRC is available from SE applet version 3.2.5, and it is optional to use.5.
Invoice DateTime must be within Certificate validity NotBefore and NotAfter from applet version 3.2.8.6.
PIN can be sent in both ASCII and decimal hex format from applet version 3.2.9. as backward comatiblity.
ASCII hex format is considerd default behaviour.

7.

Content

General Commands
Secure Element Applet is installed as a non-default applet on a smart card. Before any APDU command is
invoked, the applet is selected using the standard Select command.

1.

Fiscalization
PIN verification is a method that “unlocks” a card for invoice signing and other operations protected by
PIN code. Depending on the SE applet version, PIN is sent in decimal or hex format with ASCII encoding,
and it is sent as an array of byte digits.

2.

Audit
3.

https://tap.vms.frcs.org.fj/help/view/1596964304/General-Commands
https://tap.vms.frcs.org.fj/help/view/1596964304/Fiscalization
https://tap.vms.frcs.org.fj/help/view/1596964304/Audit

Returns 259 bytes data structure represents public card key (256 bytes modulus and 3 bytes exponent).
This key is used to encrypt Audit packages.

Secure Element Specific APDU Error Codes
This table contains the expected error codes and descriptions that a caller may encounter while working
with the Secure Element Applet.

4.

General Commands
Secure Element Applet is installed as a non-default applet on a smart card. Before any APDU command is invoked,
the applet is selected using the standard Select command.

NOTE:
The availability of specific commands, as well as their content, depends on the secure element (SE) version. You
can use the Get Secure Element Version command (see below) to check the version of the SE you are using.

Select Applet
As previously mentioned, the Smart Card has two applets installed. This command selects the Secure Element
Applet and routes subsequent APDU commands to it.

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 2.0.0 Case3Short 0x00 0xA4 0x0400 0x10 0xA000000748464A492D546178436F72650x00

APDU Response

SE Version Response Data SW1SW2

>= 2.0.0 none 0x9000

Example:

https://tap.vms.frcs.org.fj/help/view/1596964304/Audit
https://tap.vms.frcs.org.fj/help/view/1596964304/Secure-Element-Specific-APDU-Error-Codes

Request: 00A4040010A000000748464A492D546178436F726500

Response: 9000

Get Secure Element Version
This command returns the version information about the current Api version. The response contains 12 bytes,
where each 4 bytes represent unsigned integer of one version segment, making total of 3 version segments:
major, minor and patch.

APDU Request

SE CAP
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 2.0.0 Case2Short 0x88 0x08 0x0000 none none 0x00

APDU Response

SE CAP Version Response Data SW1SW2

>= 2.0.0 12 bytes 0x9000

Example 1:

Request: 8808040000

Response: 000000020000000000000000 9000

Example 2:

Request: 8808000000

Response: 000000030000000100000001 9000

Example 3:

Request: 8808000000

Response: 000000030000000200000005 9000

Forward Secure Element Directive

This command is used by E-SDC to forward instructions received from TaxCore.Api to Secure Element Applet via
Secure Element APDU Command.

If APDU Command status (SW1SW2) is OK (0x9000), consider forward instructions operation is completed.

NOTE:
From the SE version 3.2.5, optionally, CRC can be calculated and used for data verification. If CRC is not used, the
command is the same as in the previous applet version.

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 2.0.0
(no CRC)

Case3Extended0x88 0x40 0x0400 0x000200 512 bytes
received
from

TaxCore

none

>= 3.2.5
(with CRC)

Case3Extended0x88 0x40 0x0102 0x000204 512 bytes
received
from

TaxCore
+ 4 bytes
for CRC

none

APDU Response

SE Version Response Data SW1SW2

>= 2.0.0 (no CRC) none 0x9000

>= 3.2.5 (with CRC) none 0x9000

Example 1 (without CRC):

Command Data:
5DBFC9CD04AF9DC76C50FA3FF54D32D1910B0D2E1EC5AF97EAE3E71A7423CCE066D6E264255838C1DBADE6189CAA6C2FF362DAC6EBBD3A2BA768FA4433B47D68FF656670D0F511693D76E4AD59C60D9489D7EB419970ED19A964AFD26AF09BC4C3D870D6FE9FD135C35818E02F9F3DD94C1C571946F1BC466FDE1DF6A84194D767767F5DB02C9C8E20EE0F7DC9A1C4D53FE82C6565C858440B3666B84D852432C05C3D56C4D9AB8ADC692A2565B463D6DAC1EA4BB4023494A7C8A322B3899E9D0B1C0B4A1656249915CDCD8C582DFA6E3FA75ED108FB0DA83045837E6908E2431AA44B2EB84BF4EDEC6C3B0D2D8C923713AAD06B87ADC3E8219B5B4C7E6123B25B4D4498A0BF8083FBA69C29B0AE1D2F0C0FB56129FEF6D4B9FE21B5EE416F88BE2FBE5EC66E967D73F3FE33F44F40B3359793F3027B6909A70FDE2455596727D302F393B59ACB9FEEB15C5F69564F8D25F8C0AEC6765B2B470F0C230EC0E9E89724CB4A984061DC601A6386EB03D9F5D1D8E8D4DBDC14FDF37F991577B06EF8D59062061A92D35D582327A2AC159984D60BA6C3C3B42480BD9E0EB596FA704B5784E27C5A255321C4947B93E6B64198D8B19AF9A09C089C2B6BB6CA6376A90F2577813F8AB5000840C07D90B4AF5FC6C727286757B70B8F32158D03FD3226A649C0553DA4819F4CC523EEA6D2D88590A2E68A6C435E925F11E73DCCF585C784

Request:
884004000002005DBFC9CD04AF9DC76C50FA3FF54D32D1910B0D2E1EC5AF97EAE3E71A7423CCE066D6E264255838C1DBADE6189CAA6C2FF362DAC6EBBD3A2BA768FA4433B47D68FF656670D0F511693D76E4AD59C60D9489D7EB419970ED19A964AFD26AF09BC4C3D870D6FE9FD135C35818E02F9F3DD94C1C571946F1BC466FDE1DF6A84194D767767F5DB02C9C8E20EE0F7DC9A1C4D53FE82C6565C858440B3666B84D852432C05C3D56C4D9AB8ADC692A2565B463D6DAC1EA4BB4023494A7C8A322B3899E9D0B1C0B4A1656249915CDCD8C582DFA6E3FA75ED108FB0DA83045837E6908E2431AA44B2EB84BF4EDEC6C3B0D2D8C923713AAD06B87ADC3E8219B5B4C7E6123B25B4D4498A0BF8083FBA69C29B0AE1D2F0C0FB56129FEF6D4B9FE21B5EE416F88BE2FBE5EC66E967D73F3FE33F44F40B3359793F3027B6909A70FDE2455596727D302F393B59ACB9FEEB15C5F69564F8D25F8C0AEC6765B2B470F0C230EC0E9E89724CB4A984061DC601A6386EB03D9F5D1D8E8D4DBDC14FDF37F991577B06EF8D59062061A92D35D582327A2AC159984D60BA6C3C3B42480BD9E0EB596FA704B5784E27C5A255321C4947B93E6B64198D8B19AF9A09C089C2B6BB6CA6376A90F2577813F8AB5000840C07D90B4AF5FC6C727286757B70B8F32158D03FD3226A649C0553DA4819F4CC523EEA6D2D88590A2E68A6C435E925F11E73DCCF585C7840000

Response: 9000

Example 2 (with CRC):

https://tap.vms.frcs.org.fj/help/view/1866569449/Forward-Secure-Element-Directive-Command

Command Data witout CRC:
5DBFC9CD04AF9DC76C50FA3FF54D32D1910B0D2E1EC5AF97EAE3E71A7423CCE066D6E264255838C1DBADE6189CAA6C2FF362DAC6EBBD3A2BA768FA4433B47D68FF656670D0F511693D76E4AD59C60D9489D7EB419970ED19A964AFD26AF09BC4C3D870D6FE9FD135C35818E02F9F3DD94C1C571946F1BC466FDE1DF6A84194D767767F5DB02C9C8E20EE0F7DC9A1C4D53FE82C6565C858440B3666B84D852432C05C3D56C4D9AB8ADC692A2565B463D6DAC1EA4BB4023494A7C8A322B3899E9D0B1C0B4A1656249915CDCD8C582DFA6E3FA75ED108FB0DA83045837E6908E2431AA44B2EB84BF4EDEC6C3B0D2D8C923713AAD06B87ADC3E8219B5B4C7E6123B25B4D4498A0BF8083FBA69C29B0AE1D2F0C0FB56129FEF6D4B9FE21B5EE416F88BE2FBE5EC66E967D73F3FE33F44F40B3359793F3027B6909A70FDE2455596727D302F393B59ACB9FEEB15C5F69564F8D25F8C0AEC6765B2B470F0C230EC0E9E89724CB4A984061DC601A6386EB03D9F5D1D8E8D4DBDC14FDF37F991577B06EF8D59062061A92D35D582327A2AC159984D60BA6C3C3B42480BD9E0EB596FA704B5784E27C5A255321C4947B93E6B64198D8B19AF9A09C089C2B6BB6CA6376A90F2577813F8AB5000840C07D90B4AF5FC6C727286757B70B8F32158D03FD3226A649C0553DA4819F4CC523EEA6D2D88590A2E68A6C435E925F11E73DCCF585C784

Command Data CRC: F50CFF4B

Command Data:
5DBFC9CD04AF9DC76C50FA3FF54D32D1910B0D2E1EC5AF97EAE3E71A7423CCE066D6E264255838C1DBADE6189CAA6C2FF362DAC6EBBD3A2BA768FA4433B47D68FF656670D0F511693D76E4AD59C60D9489D7EB419970ED19A964AFD26AF09BC4C3D870D6FE9FD135C35818E02F9F3DD94C1C571946F1BC466FDE1DF6A84194D767767F5DB02C9C8E20EE0F7DC9A1C4D53FE82C6565C858440B3666B84D852432C05C3D56C4D9AB8ADC692A2565B463D6DAC1EA4BB4023494A7C8A322B3899E9D0B1C0B4A1656249915CDCD8C582DFA6E3FA75ED108FB0DA83045837E6908E2431AA44B2EB84BF4EDEC6C3B0D2D8C923713AAD06B87ADC3E8219B5B4C7E6123B25B4D4498A0BF8083FBA69C29B0AE1D2F0C0FB56129FEF6D4B9FE21B5EE416F88BE2FBE5EC66E967D73F3FE33F44F40B3359793F3027B6909A70FDE2455596727D302F393B59ACB9FEEB15C5F69564F8D25F8C0AEC6765B2B470F0C230EC0E9E89724CB4A984061DC601A6386EB03D9F5D1D8E8D4DBDC14FDF37F991577B06EF8D59062061A92D35D582327A2AC159984D60BA6C3C3B42480BD9E0EB596FA704B5784E27C5A255321C4947B93E6B64198D8B19AF9A09C089C2B6BB6CA6376A90F2577813F8AB5000840C07D90B4AF5FC6C727286757B70B8F32158D03FD3226A649C0553DA4819F4CC523EEA6D2D88590A2E68A6C435E925F11E73DCCF585C784F50CFF4B

Request:
884004000002045DBFC9CD04AF9DC76C50FA3FF54D32D1910B0D2E1EC5AF97EAE3E71A7423CCE066D6E264255838C1DBADE6189CAA6C2FF362DAC6EBBD3A2BA768FA4433B47D68FF656670D0F511693D76E4AD59C60D9489D7EB419970ED19A964AFD26AF09BC4C3D870D6FE9FD135C35818E02F9F3DD94C1C571946F1BC466FDE1DF6A84194D767767F5DB02C9C8E20EE0F7DC9A1C4D53FE82C6565C858440B3666B84D852432C05C3D56C4D9AB8ADC692A2565B463D6DAC1EA4BB4023494A7C8A322B3899E9D0B1C0B4A1656249915CDCD8C582DFA6E3FA75ED108FB0DA83045837E6908E2431AA44B2EB84BF4EDEC6C3B0D2D8C923713AAD06B87ADC3E8219B5B4C7E6123B25B4D4498A0BF8083FBA69C29B0AE1D2F0C0FB56129FEF6D4B9FE21B5EE416F88BE2FBE5EC66E967D73F3FE33F44F40B3359793F3027B6909A70FDE2455596727D302F393B59ACB9FEEB15C5F69564F8D25F8C0AEC6765B2B470F0C230EC0E9E89724CB4A984061DC601A6386EB03D9F5D1D8E8D4DBDC14FDF37F991577B06EF8D59062061A92D35D582327A2AC159984D60BA6C3C3B42480BD9E0EB596FA704B5784E27C5A255321C4947B93E6B64198D8B19AF9A09C089C2B6BB6CA6376A90F2577813F8AB5000840C07D90B4AF5FC6C727286757B70B8F32158D03FD3226A649C0553DA4819F4CC523EEA6D2D88590A2E68A6C435E925F11E73DCCF585C784F50CFF4B0000

Response: 9000

Export Certificate
This command exports the taxpayer certificate in a DER format. This certificate contains location data that is
present on the textual representation of an invoice.

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 2.0.0 Case2Extended0x88 0x04 0x0400 none none 0x000000

APDU Response

SE Version Response Data SW1SW2

>= 2.0.0 raw bytes random length 0x9000

Example:

Request: 88040400000000

Response: raw bytes of x509 certificate public key + 9000

Get Last Signed Invoice
This command returns information about the last singed invoice. The structure of the data recived is the same as
the response is in the Sign Invoice command.

NOTE:
From the SE version 3.2.5, optionally, CRC can be calculated and used for data verification. If CRC is not used, the
command is the same as in the previous applet version.

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 3.1.1
(no CRC)

Case2Extended0x88 0x15 0x0400 none none 0x000000

>= 3.2.5
(with CRC)

Case2Extended0x88 0x15 0x0102 none none 0x000000

APDU Response

SE Version Response Data SW1SW2

>= 3.1.1 (no CRC) 577 or 833 bytes 0x9000

>= 3.2.5 (with CRC) 581 or 837 bytes 0x9000

Example 1 (without CRC):

Request: 88150400000000

Response: 577 or 833 bytes + 9000

Response Data

Start (byte) Length (bytes) Field Description

0 8 Date/time Same as data sent from E-SDC to SE

8 20 Taxpayer ID Same as data sent from E-SDC to SE

28 20 Buyer ID Same as data sent from E-SDC to SE

48 1 Invoice type Same as data sent from E-SDC to SE

49 1 Transaction type Same as data sent from E-SDC to SE

50 7 Invoice amount Same as data sent from E-SDC to SE

57 4 Sale or refund counter value Depends on request's Tax type field

61 4 Total counter value (sale+refund) Unsigned int 32bit big endian,

65 256 or 512 Encrypted Internal Data Encrypted Internal Data length
depends on the number of
available tax rates programmed
during personalization. It may be
256 or 512 bytes long.

321 or 577 256 Digital signature

Example 2 (with CRC):

Request: 8815010200

Response: 581 or 837 + 9000

Response Data

Start (byte) Length (bytes) Field Description

0 8 Date/time Same as data sent from E-SDC to SE

8 20 Taxpayer ID Same as data sent from E-SDC to SE

28 20 Buyer ID Same as data sent from E-SDC to SE

48 1 Invoice type Same as data sent from E-SDC to SE

49 1 Transaction type Same as data sent from E-SDC to SE

50 7 Invoice amount Same as data sent from E-SDC to SE

57 4 Sale or refund counter value Depends on request's Tax type field

61 4 Total counter value (sale+refund) Unsigned int 32bit big endian,

65 256 or 512 Encrypted Internal Data Encrypted Internal Data length
depends on the number of
available tax rates programmed
during personalization. It may be
256 or 512 bytes long.

321 or 577 256 Digital signature

577 or 833 4 CRC CRC is calculated from 0 to 577 or
833 bytes.

Get PIN tries left from SE Applet
This command returns how many PIN tries are left before the card is locked

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 3.1.1 Case2Short 0x00 0x16 0x0400 none none 0x00

APDU Response

SE Version Response Data SW1SW2

>= 3.1.1 05 if 5 tries are left, 00 if the card is blocked 0x9000

Example:

Request: 8816040000

Response: 05 9000

Get CertParams
This command returns UID, SE Certificate NotBefore and SE Certificate NotAfter. NotBefore and NotAfter are in
UTC time in Unix Timestamp format.

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 3.2.8 Case2Short 0x00 0x33 0x0000 none none 0x00

APDU Response

SE Version Response Data SW1SW2

>= 3.2.8 24 bytes 0x9000

Example:

Request: 8833000000

Response: 445337584C535245000001968743CA28000001AC9386D1E8 9000

CertParam Hex Transform Value

UID 445337584C535245 DS7XLSRE

NotBefore 000001968743CA28 04/30/2025 15:14:49

NotAfter 000001AC9386D1E8 04/30/2028 15:24:49

Fiscalization

PIN Verify
PIN verification is a method that “unlocks” a card for invoice signing and other operations protected by PIN code.
Depending on the SE applet version, PIN is sent in decimal or hex format with ASCII encoding, and it is sent as an
array of byte digits.

For example, PIN 1234 can be represented in the following formats:

decimal format - PIN is represented as 0x01, 0x02, 0x03, 0x04.
•

ASCII hex format - PIN is represented as 0x31, 0x32, 0x33, 0x34.
•

APDU Request

SE IsoCase Class Instruction P1-P2 Command Command Expected

Version Length
(Lc)

Data Length
(Le)

2.0.0 ⇐ SE
version <
3.2.2
3.2.9 ⇐ SE
version

Case3Short 0x88 0x11 0x0000 0x04 4 bytes
where
each

represents
one PIN
digit

in decimal
format

none

3.2.2 ⇐ SE
version

Case3Short 0x88 0x11 0x0000 0x04 4 bytes
where
each

represents
one PIN
digit

in ASCII
hex format

none

Example:

This is an example for PIN 1234.

SE Version Command Data Request Response
(correct PIN)

Error response
(wrong PIN)

2.0.0 ⇐ SE version <
3.2.2

01020304 881100000401020304 9000 6302

>= 3.2.2 31323334 881100000431323334 9000 6302

Sign Invoice
Signs invoice and returns fiscalization data for a submitted invoice.

NOTE:
From the SE version 3.2.5, optionally, CRC can be calculated and used for data verification. If CRC is not used, the
command is the same as in the previous applet version.
NOTE:
From applet version 3.2.8, mandatory, Invoice Date/time must be greater then Certificate NotBefore and lower
then Certificate NotAfter.

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 2.0.0
(no CRC)

Case4Extended0x88 0x13 0x0400 3 byte
Command
Data byte
array
length

Command
Data byte
array

0x0000

>= 3.2.5
(with CRC)

Case4Extended0x88 0x13 0x0102 3 byte
Command
Data byte
array
length

Command
Data byte
array

+ 4 bytes
for CRC

0x0000

APDU Response

SE Version Response Data SW1SW2

>= 2.0.0 (no CRC) byte array 0x9000

>= 3.2.5 (with CRC) byte array + 4 byte CRC 0x9000

Data structure without CRC:

Command data:

Start
(byte)

Length
(byte)

Field Description

0 8 Date/time E-SDC timestamp UTC time in Unix Timestamp.
Example: 1495018011910 is 2017-05-17T10:46:51.910Z

8 20 Taxpayer ID Hex encoded byte array, leading bytes filled with 0x00.
Taxpayer ID value can consist only of ascii printable
characters. Zeros can be added only on the left side.
MSB are sent first
Example:
Taxpayer ID = 928615467,
Byte array = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x39, 0x32, 0x38, 0x36, 0x31,
0x35, 0x34, 0x36, 0x37}
(byte 0x37 is sent last to SE)

28 20 Buyer ID If unknown, leave zeroes. Formatting is the same as for

Taxpayer ID

48 1 Invoice type Values 0, 1, 2, 3, 4 as explained in section Create Invoice.

49 1 Transaction Type Sale=0, Refund=1

50 7 Invoice amount Sale or refund total amount (including taxes) - depends
on applied tax types

57 1 Number of tax categories Defines the number of tax categories which appear on
the invoice (value between 0 and 26). The following data
structure Tax Categories must be repeated exactly this
number of times.

58 8 Tax Category (1) The first Tax Category (mandatory if Number of tax
categories > 0)

66 8 Tax Category (2) The second Tax Category (mandatory if Number of tax
categories > 1)

74 ... Tax Category (n)

Tax Categories:

Start
(byte)

Length
(byte)

Field Description

58 [1] [Tax category ID] The first tax category’s OrderID, as explained in Tax Rates
section (mandatory if Number of tax categories > 0)

59 [7] [Tax category amount] The first total tax amount for the category specified in
preceding field Tax category ID (mandatory if Number of
tax categories > 0)

66 [1] [Tax category ID] The next tax category’s OrderID (mandatory if Number of
tax categories > 1)

67 [7] [Tax category amount] The next total tax amount for the category specified in
preceding field Tax category ID (mandatory if Number of
tax categories > 1)

Response data:

Start (byte) Length (bytes) Field Description

https://tap.vms.frcs.org.fj/help/view/1846128515/Create-Invoice
https://tap.vms.frcs.org.fj/help/view/1885084039/Tax-Rates

0 8 Date/time Same as data sent from E-SDC to SE

8 20 Taxpayer ID Same as data sent from E-SDC to SE

28 20 Buyer ID Same as data sent from E-SDC to SE

48 1 Invoice type Same as data sent from E-SDC to SE

49 1 Transaction type Same as data sent from E-SDC to SE

50 7 Invoice amount Same as data sent from E-SDC to SE

57 4 Sale or refund counter value Depends on request's Tax type field

61 4 Total counter value (sale+refund) unsigned int 32bit big endian,

65 256 or 512 Encrypted Internal Data Encrypted Internal Data length
depends on the number of
available tax rates programmed
during personalization. It may be
256 or 512 bytes long.

321 or 577 256 Digital signature

Example without CRC:

Command Data:
0000017B2D198AC4000000000000000050432D3130303030303030310027100C0100000000002710020000000000271003000000000027100400000000002710050000000000271006000000000027100700000000002710080000000000271009000000000027100A000000000027100B000000000027100C00000000002710

Request:
8813040000009A0000017BE9B01AB4000000000000000050432D3130303030303030310001D4C00C0100000000002710020000000000271003000000000027100400000000002710050000000000271006000000000027100700000000002710080000000000271009000000000027100A000000000027100B000000000027100C000000000027100000

Response: byte array + 9000

Data structure with CRC:

Command data:

Start
(byte)

Length
(byte)

Field Description

0 8 Date/time E-SDC timestamp UTC time in Unix Timestamp.
Example: 1495018011910 is 2017-05-17T10:46:51.910Z

8 20 Taxpayer ID Hex encoded byte array, leading bytes filled with 0x00.
Taxpayer ID value can consist only of ascii printable

characters. Zeros can be added only on the left side.
MSB are sent first
Example:
Taxpayer ID = 928615467,
Byte array = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x39, 0x32, 0x38, 0x36, 0x31,
0x35, 0x34, 0x36, 0x37}
(byte 0x37 is sent last to SE)

28 20 Buyer ID If unknown, leave zeroes. Formatting is the same as for
Taxpayer ID

48 1 Invoice type Values 0, 1, 2, 3, 4 as explained in section Create Invoice.

49 1 Transaction Type Sale=0, Refund=1

50 7 Invoice amount Sale or refund total amount (including taxes) - depends
on applied tax types

57 1 Number of tax categories Defines the number of tax categories which appear on
the invoice (value between 0 and 26). The following data
structure Tax Categories must be repeated exactly this
number of times.

58 8 Tax Category (1) The first Tax Category (mandatory if Number of tax
categories > 0)

66 8 Tax Category (2) The second Tax Category (mandatory if Number of tax
categories > 1)

74 ... Tax Category (n)

... 4 CRC CRC is calculated from 0 to 74 bytes (or to last byte if
data).

Tax Categories:

Start
(byte)

Length
(byte)

Field Description

58 [1] [Tax category ID] The first tax category’s OrderID, as explained in Tax Rates
section (mandatory if Number of tax categories > 0)

59 [7] [Tax category amount] The first total tax amount for the category specified in
preceding field Tax category ID (mandatory if Number of
tax categories > 0)

https://tap.vms.frcs.org.fj/help/view/1846128515/Create-Invoice
https://tap.vms.frcs.org.fj/help/view/1885084039/Tax-Rates

66 [1] [Tax category ID] The next tax category’s OrderID (mandatory if Number of
tax categories > 1)

67 [7] [Tax category amount] The next total tax amount for the category specified in
preceding field Tax category ID (mandatory if Number of
tax categories > 1)

Response data:

Start (byte) Length (bytes) Field Description

0 8 Date/time Same as data sent from E-SDC to SE

8 20 Taxpayer ID Same as data sent from E-SDC to SE

28 20 Buyer ID Same as data sent from E-SDC to SE

48 1 Invoice type Same as data sent from E-SDC to SE

49 1 Transaction type Same as data sent from E-SDC to SE

50 7 Invoice amount Same as data sent from E-SDC to SE

57 4 Sale or refund counter value Depends on request's Tax type field

61 4 Total counter value (sale+refund) unsigned int 32bit big endian,

65 256 or 512 Encrypted Internal Data Encrypted Internal Data length
depends on the number of
available tax rates programmed
during personalization. It may be
256 or 512 bytes long.

321 or 577 256 Digital signature

577 or 833 4 CRC CRC is calculated from 0 to 577 or
833 bytes.

Example with CRC:

Command Data:
0000017B2D198AC4000000000000000050432D3130303030303030310027100C0100000000002710020000000000271003000000000027100400000000002710050000000000271006000000000027100700000000002710080000000000271009000000000027100A000000000027100B000000000027100C00000000002710

Command Data CRC: 90F2BC39

Request:
88130102E0000017BE9B01AB4000000000000000050432D3130303030303030310001D4C00C0100000000002710020000000000271003000000000027100400000000002710050000000000271006000000000027100700000000002710080000000000271009000000000027100A000000000027100B000000000027100C00000000002710000090F2BC39

Response: byte array invoice + 4 byte CRC + 9000

Amount Status
Returns 14-bytes-long data structure (7 bytes for sum SALE and REFUND, and 7 bytes for Limit Amount)

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 2.0.0 Case2Short 0x88 0x14 0x0400 none none 0x00

APDU Response

SE Version Response Data SW1SW2

>= 2.0.0 14 byte array 0x9000

Example:

Request: 8814040000

Response: 0000724AA18328038D7EA4C68000 9000 (SALE+REFUND=490878370600 , Limit
Amount=1000000000000000)

Audit

Export TaxCore Public Key
Returns 259 bytes data structure represents public card key (256 bytes modulus and 3 bytes exponent). This key is
used to encrypt Audit packages.

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 2.0.0 Case2Extended0x88 0x07 0x0400 none none 0x000000

APDU Response

SE Version Response Data SW1SW2

>= 2.0.0 259 bytes data 0x0900

Example:

Request: 88070400000000

Response: 256 bytes modulus + 3 bytes exponent + 9000

Export Audit Data
Exports encrypted audit data.

NOTE:
From the SE version 3.2.5, optionally, CRC can be calculated and used for data verification. If CRC is not used, the
command is the same as in the previous applet version.

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 2.0.0
(no CRC)

Case2Extended0x88 0x12 0x0400 none none 0x000000

>= 3.2.5
(with CRC)

Case2Extended0x88 0x12 0x0102 none none 0x000000

APDU Response

SE Version Response Data SW1SW2

>= 2.0.0 (no CRC) 565 or 821 bytes data 0x9000

>= 3.2.5 (with CRC) 569 or 825 bytes data 0x9000

NOTE:
Depending on the Internal Data, the total length of the structure is 565 or 821 bytes. For versions **3.2.5 or
later** if CRC is used, the total lenght can be 569 or 825 if CRC is added.

Exported audit data has the following structure, without CRC:

Offset Length Data Note

0 4 TaxCore Key Version

4 256 Crypted Internal Data The length of Crypted Internal Data can
be 256 or 512 bytes

260 or 516 20 Taxpayer Identification Number (TIN)

280 or 536 20 Buyer ID

300 or 556 1 Invoice type

301 or 557 1 Transaction type

302 or 558 7 Invoice amount

309 or 565 256 Digital signature of the above structure

Exported audit data has the following structure, with CRC:

Offset Length Data Note

0 4 TaxCore Key Version

4 256 Crypted Internal Data The length of Crypted Internal Data can
be 256 or 512 bytes

260 or 516 20 Taxpayer Identification Number (TIN)

280 or 536 20 Buyer ID

300 or 556 1 Invoice type

301 or 557 1 Transaction type

302 or 558 7 Invoice amount

309 or 565 256 Digital signature of the above structure

565 or 821 4 CRC CRC is calculated from 0 to 565 or 821
bytes.

Example 1 (without CRC):

Request: 88120400000000

Response: 565 or 821 bytes + 9000

Example 2 (with CRC):

Request: 88120102000000

Response: 569 or 825 bytes + 9000

Start Audit
Notifies the Secure element that the audit process has been initialized by E-SDC.

Secure element returns an encrypted message that shall be submitted to TaxCore as the content of the field
auditRequestPayload of audit-proof request.

NOTE:
From the SE version 3.2.5, optionally, CRC can be calculated and used for data verification. If CRC is not used, the
command is the same as in the previous applet version.

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 2.0.0
(no CRC)

Case2Extended0x88 0x21 0x0400 none none 0x000000

>= 3.2.5
(with CRC)

Case2Extended0x88 0x21 0x0102 none none 0x000000

https://tap.vms.frcs.org.fj/help/view/1959712697/Format-of-the-Audit%2DProof-Request

APDU Response

SE Version Response Data SW1SW2

>= 2.0.0 (no CRC) 260 bytes data 0x9000

>= 3.2.5 (with CRC) 264 bytes data 0x9000

Example 1 (without CRC):

Request: 88210400000000

Response: 260 bytes data + 9000

Example 2 (with CRC):

Request: 88210102000000

Response: 260 bytes data + 4 bytes CRC data + 9000

End Audit
Notifies the Secure element that the audit process has been finalized by TaxCore. If APDU Command status is OK
(0x90 0x00) consider the audit operation is completed.

NOTE:
From the SE version 3.2.5, optionally, CRC can be calculated and used for data verification. If CRC is not used, the
command is the same as in the previous applet version.

APDU Request

SE
Version

IsoCase Class Instruction P1-P2 Command
Length
(Lc)

Command
Data

Expected
Length
(Le)

>= 2.0.0
(no CRC)

Case3Extended0x88 0x20 0x0400 0x000100 256 bytes
received
from

TaxCore

none

>= 3.2.5
(with CRC)

Case3Extended0x88 0x20 0x0102 0x000104 256 bytes
received
from

TaxCore
+ 4 bytes

none

for CRC

APDU Response

SE Version Response Data SW1SW2

>= 2.0.0 (no CRC) none 0x9000

>= 3.2.5 (with CRC) none 0x9000

Example 1 (without CRC):

Command Data:
253AB91A21859A06813E8A880E10BA0C67A09DDBED0B7E001F638CA015D2E414744E0C5C2E0F5F827DFCB0B14144FBB14E96C6A1C31E9163725FAA59D0A2D4CDDDBDDA30BA0E4EA2CAE2C4D2D77371C11E00A943CFE4666112E152B477972FED9516F551E73CA8E86C2ED371DDC06D5CC96A07D1AC25C028356AC4F07FF7B0034BF53187A9BF6284F6E633207F46BCFC1A030F3DBA4A77DFF154EE8DCDEE4920080CC23C8DF65C19B7150A786E2EB7C24A5C9103FFCF5B68348C23538FDDB115734DB6CF58F6A1C0558C2D32A4AA68BFCE33AB6F377329D01D9C2EA6F9626465A2C2FF065F6B330CC48893B1DEE561DD860599EC91996E4CAC6A91173421DE89

Request:
88200400000100253AB91A21859A06813E8A880E10BA0C67A09DDBED0B7E001F638CA015D2E414744E0C5C2E0F5F827DFCB0B14144FBB14E96C6A1C31E9163725FAA59D0A2D4CDDDBDDA30BA0E4EA2CAE2C4D2D77371C11E00A943CFE4666112E152B477972FED9516F551E73CA8E86C2ED371DDC06D5CC96A07D1AC25C028356AC4F07FF7B0034BF53187A9BF6284F6E633207F46BCFC1A030F3DBA4A77DFF154EE8DCDEE4920080CC23C8DF65C19B7150A786E2EB7C24A5C9103FFCF5B68348C23538FDDB115734DB6CF58F6A1C0558C2D32A4AA68BFCE33AB6F377329D01D9C2EA6F9626465A2C2FF065F6B330CC48893B1DEE561DD860599EC91996E4CAC6A91173421DE89
9000

Example 2 (with CRC):

Command Data:
253AB91A21859A06813E8A880E10BA0C67A09DDBED0B7E001F638CA015D2E414744E0C5C2E0F5F827DFCB0B14144FBB14E96C6A1C31E9163725FAA59D0A2D4CDDDBDDA30BA0E4EA2CAE2C4D2D77371C11E00A943CFE4666112E152B477972FED9516F551E73CA8E86C2ED371DDC06D5CC96A07D1AC25C028356AC4F07FF7B0034BF53187A9BF6284F6E633207F46BCFC1A030F3DBA4A77DFF154EE8DCDEE4920080CC23C8DF65C19B7150A786E2EB7C24A5C9103FFCF5B68348C23538FDDB115734DB6CF58F6A1C0558C2D32A4AA68BFCE33AB6F377329D01D9C2EA6F9626465A2C2FF065F6B330CC48893B1DEE561DD860599EC91996E4CAC6A91173421DE89

Command Data CRC: CEE700A0

Request:
88200102000104253AB91A21859A06813E8A880E10BA0C67A09DDBED0B7E001F638CA015D2E414744E0C5C2E0F5F827DFCB0B14144FBB14E96C6A1C31E9163725FAA59D0A2D4CDDDBDDA30BA0E4EA2CAE2C4D2D77371C11E00A943CFE4666112E152B477972FED9516F551E73CA8E86C2ED371DDC06D5CC96A07D1AC25C028356AC4F07FF7B0034BF53187A9BF6284F6E633207F46BCFC1A030F3DBA4A77DFF154EE8DCDEE4920080CC23C8DF65C19B7150A786E2EB7C24A5C9103FFCF5B68348C23538FDDB115734DB6CF58F6A1C0558C2D32A4AA68BFCE33AB6F377329D01D9C2EA6F9626465A2C2FF065F6B330CC48893B1DEE561DD860599EC91996E4CAC6A91173421DE89CEE700A0
9000

Secure Element Specific APDU Error Codes
This table contains the expected error codes and descriptions that a caller may encounter while working with the
Secure Element Applet.

Error Code APDU Command Description Error Code to POS

0x6301 Sign Invoice PIN verification required before executing a
command

1500

0x6302 Verify PIN PIN verification failed – wrong PIN code 2100

0x6303 Verify PIN Wrong PIN size 2100

0x6304 Sign Invoice Maximum number of tax categories exceeded SDC related

0x6305 Sign Invoice Secure Element amount has reached the
defined limit. The Secure Element is locked and
no additional invoices can be signed before the
audit is completed.

2210

0x6306 End Audit End Audit is sent but there is no active Audit SDC related

0x6307 Sign Invoice Invoice fiscalization is disabled by system 2210

0x6308 Sign Invoice Invoice DateTime must be within Certificate
validity NotBefore and NotAfter

SDC related

0x6310 Verify PIN The number of allowed PIN entries exceeded 2110

0x63FF Sign Invoice A Secure Element counter has reached its limit.
The Secure Element must be replaced.

SDC related

0x6700 End Audit Data must be 256 bytes long SDC related

0x6A80 End Audit Proof of Audit command payload provided as
APDU Command Data does not match the latest
Start Audit one which Secure Element expects.
Probably a new Start Audit was initiated after
this one was ended.

SDC related

0x6A80 Sign Invoice The tax category order id exceeds the maximum
allowed for the Secure Element.

2310

0x6F00 End Audit APDU Command Data cannot be recognized as
a valid Proof of Audit

SDC related

File-Based Communication

Introduction
This section contains the description of the File-based communication with E-SDC.

File-based communication between TaxCore.API and E-SDC is foundation of Local Audit process.

https://tap.vms.frcs.org.fj/help/view/1576611475/Local-Audit

General structure for storing files on removable memory units:

Removable memory root

UID (folder)
audit packages (file)o
UID.arp (file)o

•

UID.commands (file)•
UID.results (file)•

NOTE:
The above structure displays files for all individual file transfers (copy audit files from E-SDC, upload commands
to E-SDC, and transfer commands result from E-SDC). It is used here for explanatory purposes. Each individual file
transfer includes only the files specific for that transfer.

Content

SD Cards or Flash Memory Drives Format
Each E-SDC shall work with the following file system formats of SD Cards and USB Flash drives:

1.

E SDC is Configured Using Initialization Commands from an SD Card
JSON file containing all pending commands must be stored in the root of the external disk volume and
named {UID}.commands (e.g D:\\YJ37C9Z9.commands)

2.

E SDC Stores Audit Files on SD Card or USB Drive
An E-SDC shall perform an audit automatically once an SD Card or USB drive is inserted. If any commands
are received on the same medium, they shall be executed before the proceeding with the Local audit.

3.

E SDC Executes Commands Received via SD Card or USB Drive
An E-SDC shall process commands automatically upon insertion of SD Card or USB Flash drive. Command
execution takes precedence over a Local audit.

4.

E SDC Stores a Command Execution Result to the SD Card or USB Drive
After commands have been executed, E-SDC must generate a JSON file named {UID}.results. The result
must be in format described in paragraph Commands Execution Results in Commands. It is stored in the
root folder on the SD Card/USB drive.

5.

https://tap.vms.frcs.org.fj/help/view/1720382301/SD-Cards-or-Flash-Memory-Drives-Format
https://tap.vms.frcs.org.fj/help/view/1720382301/E%2DSDC-is-Configured-Using-Initialization-Commands-from-an-SD-Card
https://tap.vms.frcs.org.fj/help/view/1720382301/E%2DSDC-Stores-Audit-Files-on-SD-Card-or-USB-Drive
https://tap.vms.frcs.org.fj/help/view/1720382301/E%2DSDC-Executes-Commands-Received-via-SD-Card-or-USB-Drive
https://tap.vms.frcs.org.fj/help/view/1720382301/E%2DSDC-Stores-a-Command-Execution-Result-to-the-SD-Card-or-USB-Drive
https://tap.vms.frcs.org.fj/help/view/716114083/Commands

SD Cards or Flash Memory Drives Format
Each E-SDC shall work with the following file system formats of SD Cards and USB Flash drives:

FAT•
FAT32•
NTFS•

E-SDC is Configured Using Initialization Commands
from an SD Card

Commands File
JSON file containing all pending commands must be stored in the root of the external disk volume and named
{UID}.commands (e.g D:\\YJ37C9Z9.commands)

Command file may be generated and downloaded from either Taxpayer Admin Portal (by taxpayers) or the
internal back office portal (by tax authority officers).

Commands File Format
Command file content must be formatted as valid JSON file.

[
 {
 "commandId": "GUID",
 "type": 0,
 "payload": "Command Specific Json as string",
 "uid": "string"
 }
]

End Of Line Characters
E-SDC must be able to process commands file using any standard EOL characters.

E-SDC Stores Audit Files on SD Card or USB Drive

An E-SDC shall perform an audit automatically once an SD Card or USB drive is inserted. If any commands are
received on the same medium, they shall be executed before the proceeding with the Local audit.

NOTE:
Audit files must remain stored in E-SDC's local memory until it receives a Proof-of-Audit command from
TaxCore.API

All files shall be stored in the folder(s) named after the UID(s) of the secure element(s) which created them.

Example: G:\BJ3PN1S9\, where G is the root of the SD card/USB drive and contains audit packages created by
the secure element with the UID BJ3PN1S9.

If the folder(s) do not exist, an E-SDC shall create new one(s) - one for each UID.

All audit package files stored in E-SDC's local memory, no matter which secure element was used to create them
shall be copied to the appropriate folder(s). Audit package files must be named using the following convention:
{UID}-{UID}-{Ordinal_Number}.json.

Depending on whether the smart card secure element is connected to the E-SDC, the folder named after its UID
may contain one {UID}.arp file. The content of the {UID}.arp file is described in Submit Audit Request
Payload - ARP.

File structure for this transfer should look like this:

Removable memory root

UID folder
audit package fileso
UID.arpo

•

NOTE:
Dumped audit package files must be created by secure element(s) from the appropriate target environment, e.g.
if the Local Audit is performed for the production environment, only audit package files created by the
production environment secure elements can be dumped on an SD Card or USB Drive. This is done in order to
avoid uploading audit packages to environments which do not recognize the UIDs created for different
environments.

E-SDC Executes Commands Received via SD Card or
USB Drive

https://tap.vms.frcs.org.fj/help/view/1134894772/Submit-Audit-Request-Payload-%2D-ARP

An E-SDC shall process commands automatically upon insertion of SD Card or USB Flash drive. Command
execution takes precedence over a Local audit.

JSON file containing all pending commands must be stored in the root of the external disk volume and named
{UID}.commands (e.g D:\\YJ37C9Z9.commands).

File structure for this transfer should look like this:

Removable memory root

UID.commands•

E-SDC shall execute only those commands with the same UID as UID assigned to the digital certificate of the
Secure Element (stored in the SerialNumber field of the certificate subject).

Command types and the structure are explained in section Commands.

E-SDC Stores a Command Execution Result to the SD
Card or USB Drive
After commands have been executed, E-SDC must generate a JSON file named {UID}.results. The result must be
in format described in paragraph Commands Execution Results in Commands. It is stored in the root folder on the
SD Card/USB drive.

Example: G:\BJ3PN1S9.results

where G is the root of the SD card/USB drive and BJ3PN1S9 is an example UID of the smart card in use

If file with the same name exists on the SD Card/USB drive, it must be overwritten.

File structure for this transfer should look like this:

Removable memory root

UID.results•

https://tap.vms.frcs.org.fj/help/view/716114083/Commands
https://tap.vms.frcs.org.fj/help/view/716114083/Commands

